Biological Evolution Standard 1 & 2 Study Guide

Science is based on three characteristics. They are:

Standard 1: Explain how our understanding of biological evolution has changed over time with new scientific research and discoveries

	1.	Testoble				
	2.	Chargeoble				
	3.	Collaborative				
Descri	be '	the following scientists contributions	to our understa	anding of biolo	gical evolution	1:
	•	Robert Malthus: Suggested	thet	life (he	was total	Live
		about humans) produ				
	•	Charles Lyell: Developed	idea of	Uniter	mitarionsy	n:
		processes meuronoms				
	•	Charles Darwin:	selection:	species	Chrise	
		due to nutural se				
	•	Jean Baptise de Lamarck:5		allived	truits du	1.19
		on individual's life +			to 01+50	
	•	Alfred Wallace: Also propos		Al-	, that a	species
		Charge over time		natural 5	elation	
	•	Hutton: Suggested the	idea	ot	geo logico	1 time
		and uniformitary	nisn			
Both L	.am	narck and Darwin suggested ways th	at organisms in	herit traits. S	tate their theo	ries and
	n ti	the difference between their theories				
	L	-march: Species argure	truts			
	D	Dorwn: Species charge	c by t	hose best	fit Sur	vive to
		Lo Muck thought i	ndividuals	change	during	ther
		lifetime results in ben	y prosed or			1-11110-
Using	abs	osolute and relative dating techniques	s, data suggests	s the earth is _	LI.S -4.6	011100
	_ ye	ears old (don't forget units). The	Lun of	Supe	position	

suggests that older rock layers and fossils are found on the bottom and younger on the top. The									
age of fossil samples can be calculated using dating. The dating. The dating.									
describes the relationships and timing of events during the history of									
earth. Three examples of fossils include,,, and									
omber									
Standard 2: Identify and explain different mechanisms (processes) that contribute to									
species changing over time.									
Explain the following terms in relation to biological evolution:									
· Fitness: Ability of individual to survive in it's envi.									
and have reproducing off spring of poss on yer									
· Natural Selection: Change in population over time wased									
by some individuals being better for their er									
· Genetic Variation: <u>differences</u> in tracts of individuals									
in some species => bell curve									
· Competition: Individuals in some species (and diff									
species) compete for food, shelter, mutes									
· Adaptation: Structure, behavior internal process that									
Lelps organism survive in its enut.									
Competition:									
- not on Standard 2 ossessment, Standard 4									
Due to selection, populations are always changing. In polygenic traits, a bell core									
shows the distribution or range of phenotypes for the trait. If one extreme of the trait is best fit for									
the environment this represents selection; if both extremes of the trait are									
best fit for the environment this represents selection; if the middle or									
average form of the trait is best fit for the environment this represents									
selection. Selection occurs when an individual selects a mate based on specific trait									
characteristics. For example, male peacocks have brightly colored feathers to attract mates.									
O () () () () () () () () () () () () ()									
Over time, competition, genetic variation within population, over production of offspring, adaptation,									
and natural selection can cause a to evolve.									

Pop	ulutions	Evolve, _iodviduols do not.	
-	Adaptations:	Structure, behavior or & internal process	
		on organism to survive in its eput.	i.
77	Behavioral:	adaptations and give an example of each: behavior (vetron) that helps on nism survive in it's enut.	
	a. Example: Structural:	Birds migrate in winter Physical trait that helps on ism survive in it's envt.	
•	a. Example: Physiological: _	Thors on plants to protect then Internal process that helps an maintain homeostosis (balance) & surviv Humans make enzyme that	
		they yet a cut	